

3D Printed Robotic Dog Controlled by Arduino

Chun Kwan
Furr High School and University of Houston

COLLEGE of TECHNOLOGY

Introduction

3D Printed

Power by 12v battery

Arduino

Walk on 4 legs

Remote control by radio

Preset movements

Inverse Kinematics

Mathematics

Inverse Kinematics

- · Consists of 2 servo motors per limb
- Control the angle of Femur and Tibia in real time
- Motor angle depends on end-effector positions

1. Circle Formula

2. Distance Formula

3. Law of Cosine

4. Trig. Functions

Coding

Arduino, C++

- · Calculating angles in real time
- · Room for adjustment
- · 2 different scripts for sensors and motion
- 3/4 delay between front and back limbs

3D Printing

Ender 3
PLA (Body)
PETG (Foot)
PrusaSlicer
Various infill

Acknowledgements

Funded by National Science Foundation (NSF Grant No. EEC-1855147) for support of RET COT. Sincere appreciation to Dr. Weihang Zhu, Josh Clark, UH College of Technology and other faculty members from UH.

Reference

https://www.mathworks.com/discovery/inverse-kinematics.html https://www.sciencedirect.com/topics/engineering/inverse-kinematics https://www.rosroboticslearning.com/inverse-kinematics

https://oscarliang.com/inverse-kinematics-and-trigonometry-basics/

3S Lipo Battery

Electrical Circuits

LM2596 Buck Converter

ACS712 Current Sensor

AMS1117 Regular

nrf24l01 Radio Transceiver

PCA9685 Servo Driver

MPU6050 Accelerometer